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EVALUATION OF ECONOMETRIC MODELS

Model Construction and Evaluation
When Theoretical Knowledge Is Scarce

Theory and Application of
Partial Least Squares

HERMAN WOLD

DEPARTMENT OF STATISTICS
UNIVERSITY OF UPPSALA
UPPSALA, SWEDEN

INTRODUCTION

During the past decade many econometricians have come to realize that
the use of much of the contemporary set of rigorous tools of statistical analysis
is not applicable in all circumstances, mainly because the knowledge re-
quirements of the investigator are far greater than are available. For example,
a typical regression problem will require the researcher to know the relevant
variables in the regression, its functional form, whether or not the observed
relationship can be identified with the theoretical concept, and knowledge
of the relevant distributions up to estimable parameter values.

Unfortunately, there are few topics in economics where these assump-
tions are tenable, at least in full. There are two areas of knowledge deficiency.
First, in many topics in economics our theories are merely prescriptions of
alikely list of causal variables for some specified set ofeffect variables. Second,
our knowledge of the statistical distributional properties of the relevant
variables is even less complete. A related empirical difficulty is that usually
the variables of direct interest cannot be observed and one must rely on
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indicator (marker) variables which are assumed to have some degree of asso-
ciation with the variables of theoretical interest. Under such circumstances
to proceed along conventional lines with numerous heroic assumptions is
inferentially hazardous. Another less ambitious but less knowledge sensitive
approach is needed. Two items are required: a less knowledge intensive
formulation of theory and a robust statistical procedure for drawing infer-
ences when one is ignorant about the relevant statistical distributions. The
former requirement can be met by the development of what has come to be
known in the sociological literature as “path models.”! The latter require-
ment is met by the use of partial least squares.

PAaTH MODELS: THEIR USE IN THE MODELING
OF RUDIMENTARY THEORIES

Path models and their use are best explained in terms of an example.
Consider the inferential problem faced by Adelman & Morriss (1967, 1973),
who wished to learn something about the “causes of economic growth” in
noncommunist developing countries. Seventy-four countries provided ob-
servations on aspects of economic growth together with data on 41 indicators
of economic, social, and political factors such as rate of growth of real per
capita income, abundance of natural resources, extent of social mobility, and
degree of competitiveness of political parties; see Table 1.

The initial analysis of these data used principal components to classify
all 74 countries into three phases of economic growth: low, sporadic or
abortive, and high; see Fig. 1a. Adelman and Morriss felt that their investi-
gation of the causes of differential growth rates would be supported by little
theoretical insight beyond a list of potentially useful indicators of growth
and of the causes of growth differentials. Further, no detailed assumptions
about statistical distributions could be made.

In a later investigation based on the same data, Adelman et al. (1975a)
designed a path model to explain economic growth in terms of economic,
social, and political conditions. Whatever conceptual-theoretical insight
there is in the model is illustrated diagrammatically by its arrow scheme; see
Fig. 1b. The elementary notions are these: Social conditions affect both
political conditions and economic growth rates. Economic levels also affect
both political conditions and economic growth rates. Finally, the political
conditions themselves clearly affect growth rates. Apart from these general
statements about the four categories of the model—economic levels, social

! Blalock (1964, 1971).
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and political conditions, economic growth rates—there is the pivotal ques-
tion of what observable variables can be used as suitable markers or indi-
cators for these categories. The 39 observables that are selected as indicators
for the four blocks of the model are listed in Table 1. With respect to the
causal-predictive purposes of the model, one would like to obtain some
measure of the relative effect of, say, economic levels and political conditions,
on growth rates. The development of path models enables one to provide
initial, albeit tentative, answers to these questions.

TABLE 1

THE FOUR BLOCKS OF INDICATOR VARIABLES IN THE ADELMAN MODEL*

Block No. 1 Block No. 3
(B) Indicators of economic Levels (P) Indicators of political conditions

1. Level of infrastructure 1 Degree of administrative efficiency
2 Level of industry 2 Degree of centralization of political
3 Level of agriculture power
4 Dualism 3 Democratic tradition
5 Per capita GNP 4 Degree of freedom of the press
6 Structure of trade 5 Predominant basis of the political
7 Abundance of natural resources party system

6 Factionalization of parties

7 Extent of political stability

8 Extent of leadership commitment

9 Strength of labor movement

10 Political strength of the traditional elite
11 Political strength of the military
Block No. 2 Block No. 4
(S) Indicators of social conditions (G) Indicators of economic growth

1 Size of traditional agricultural sector 1 Rate of change in per capita GNP
2 Modernization of outlook 2 Investment rate
3 Size of middle class 3 Improvement in taxation system
4 Extent of social mobility 4 Improvement in degree of
5 Extent of literacy industrialization
6 Extent of mass communication 5 Improvement in financial institutions
7 Degree of social tension 6 Improvement in agriculture
8 National integration 7 Improvement in infrastructure
9 Ethnic homogeneity 8 Rate of improvement of human

10 Crude fertility rate resources
11 Urbanization ' ' :

12  Agricultural organization

13 Social organization

s Adelman et al. (1975a). Two of the 41 indicators in the data bank were dropped in the
soft model reported here.




50 HERMAN WOLD

74 cases (countries)

m

w
=z
T
H
i

)

4tindicator variables

@

(a)

Social Block, S

Sccial [N
indicator| |-
variables [ -7
\\ _-==7_lPolitical 7| |Economic
———-»| |indicator Z--—> |growth
[ voriables ~~<| |variables
Economic N POMICO|B|OCk,P GEcon’ol:'ngi )
indicator| [--3» row ock, G
variables[ |-~

Economic Block, E .
(b)

Fig. 1. Data matrix and arrow scheme for Adelman’s model. (a) Classification of 74 coun-
tries : Low (L), Sporadic (M) and High (H) degrees of economic growth, using 41 indicators :
Economic levels (E), social indicators (S), political indicators (P), economic growth rates (G).
Ref. Adelman & Morriss (1967; 1973) (b) Four-block model designed by Adelman et al. (1975a) :
Economic levels and Social conditions influence the Political conditions; these three blocks
influence the Economic growth rates.

Path models with manifest (directly observed) variables have been a
principal tool in econometrics since the 1930s. Path models with latent (in-
directly observed) variables were initiated in sociology about 1960.2 Concep-
tually, the transition from manifest to latent variables in path modeling
borrowed its rationale from the classical models of factor analysis in psychol-
ogy. The transition to latent variables opened a new field of interest in
statistical inference. Statistical methods for estimating the parameters of path
models with latent variables have been developed by K. G. Jéreskog (1970,
1973, 1978, 1980), using his LISREL versions of the ML (Maximum Like-
lihood) approach, and by H. Wold (1974, 1975a,b,c,d, 1977a,b, 1978a,b,
1980b) using PLS (Partial Least Squares) estimation.

2 Cf. Duncan (1966).
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The present paper gives a brief exposition of the PLS approach to path
models with latent variables. The next section begins with a broad overall
view of the PLS procedure.

THE PLS APPROACH TO PATH MODELS WITH LATENT
VARIABLES: AN OVERVIEW OF ENDS AND MEANS

The PLS approach to path models with latent variables is primarily
intended for multidisciplinary and other applications where the problems
explored are complex and theoretical knowledge is scarce. Three character-
istics are involved: (a) causal-predictive analysis, (b) complexity of the prob-
lems explored, and (c) scarcity of prior theoretical knowledge.

In this section the emphasis is on how these characteristics are reflected
in each of the four phases of the construction of a PLS path model with
latent variables: theoretical specification, estimation, testing, and evaluation.

Theoretical Definition of the Model

The design of a PLS path model with latent variables is indicated by its
arrow scheme and its block structure. The arrow scheme illustrates basic
features of the model. The manifest variables are grouped into blocks. In
each block the manifest variables are assumed to be indicators of a latent
variable (LV). The LVs, which the structural units of the model, are inter-
related by inner relations. The formal relationships between the LVs and their
indicators constitute the block structure. The arrows indicate channels of
information in the model.

The specification of the block structure and the inner relations consti-
tutes the theoretical definition of the model. The residuals for the estimated
inner relations and relationships between LVs and indicators are marked by
arrow heads in Fig. 1b. A feature of the model, which is not explicitly illus-
trated by the arrow scheme, is the specification of the causal—predictive
relations. As corollaries of the specification of the block structure and the
inner relations, they provide causal-predictive inferences on the indicators
of those LVs that are effect variables in the inner relations, namely, in-
ferences in terms of indicators and/or LVs of the corresponding explanatory
variables. The block structure, the inner relations, and the causal-predictive
relations are called the structural relations of the model.

Estimation of the Model

The estimation procedure for a PLS model with LVs has four charac-
teristic features. Each LV is estimated as a weighted aggregate of its indica-
tors. The weights of the indicators in each aggregate are determined by the
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weight relations of the various blocks. The model builder has the option to
choose among different modes—A, B, or C—for the design of the weight
relations. The selection of estimation mode is guided by the subject matter
of the model. The estimation proceeds in three stages. First, an iterative pro-
cedure estimates the weights and the LVs. Second, the LVs estimated in the
first stage provide regressors for estimating the other unknown coeflicients
of the model by OLS (Ordinary Least Squares) regressions. It is important
to note that in the third stage the location parameters are estimated.

Testing the Model

With respect to the testing and evaluation of the model, classical methods
such as confidence intervals and goodness of fit, which are based on distri-
butional properties of the observables, are not available because of the
scarcity of theoretical knowledge. PLS modeling instead uses LS (Least
Squares)-oriented but distribution-free methods. This parting of the ways is
technical rather than real, for ML aims for optimal accuracy but PLS for
consistency. Under regular conditions ML and PLS estimates are CO-consis-
tent, so that there is no substantial difference between the two set of esti-
mates.

Two types of statistical tests have been developed for PLS path models
with LVs. An overall test of the model is provided by the predictive signi-
ficance of the model. The procedure uses an adaptation of the Stone—Geisser
(1974) cross-validation method. The robustness of the various parameter
estimates is tested by random perturbation of the data (see Adelman et al.
(19750)).

1. Model Formulation When Theoretical
Knowledge Is Scarce

We begin our discussion of the formulation of soft models with some
notational details. In our general formulas for the basic design of PLS path
models with LVs we shall use the following notation. J denotes the number
of blocks and K; the number of indicators in the jth block. The manifest
variables are denoted by

xik'. ]:1,,-], k—':l,...,Kj (1)
and the latent variables by

é,.:' j=1,...,1 )
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The values taken by the manifest and latent variables, which are also known
as “case values,” are denoted by

xjk",éjn: j=1,...,J, k=1,...,K n=1,...,N. (3)

s

As is customary, we denote theoretical entities by Greek letters and the
corresponding estimates by the appropriate Roman letters. The data bank
of Adelman and Morriss (1967, 1973) has N = 74 observations on 41 indi-
cators of economic, social, and political conditions. Adelman’s model, given
by the arrow scheme shown in Fig. 1b, groups the observables into J = 4
blocks, with K= 7 indicators of economic levels, E; K, = 13 indicators of
social conditions, S; K3 = 11 indicators of political conditions, P; and
K, = 8 indicators of economic growth, G; see Table 1.

1.1 THE ARROW SCHEME

The arrow scheme groups the observables—that is, the manifest vari-
ables—into blocks of indicators, designates the hypothetical latent variables,
and shows the relationships between the LVs; these are assumed to form
a causal chain system.?> The “outer” arrows between each LV and its in-
dicators serve to illustrate the optional choice of estimation modes A, B, or
C, which will be discussed in Section 2. Depending upon their position in the
causal chain system, the blocks and their corresponding latent variables are
either exogenous or endogenous. In Adelman’s model the two blocks and
LVs of economic levels and social conditions are exogenous, the two blocks
and LVs of political conditions and economic growth rates are endogenous.

1.2. THE BLOCK STRUCTURE

In the basic design of PLS path models with LVs the block structure is
assumed to be linear:
xjk:/ljk‘f‘ﬂ?jké""ujk, ]=1 LK, k=1,... Kj, (4)

where £; is the LV of the jth block, ny, is the loading of the kth indicator
X in the jth block, the us are location parameters and the vs are residuals in
the block structure.

3 As to the general rationale of causal chain systems and interdependent systems, PLS
modeling adheres to the exposition in Mosbaek & H. Wold (1970).
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In each relation in (4), the systematic part is assumed to be the condi-
tional expectation of the indicator when the latent variable is given—that is,

E(xjk ij)zﬂjk"i_njk&j’ j=1,...,], k=1,...,Kj.4 (5)

The “predictor” assumption in (5) implies that each residual in each equation
has a conditional expectation of zero and is uncorrelated with the latent
variable occurring in that equation. Since both = and £; are unknown in
the block structure in (4), some standardization of scale is necessary in order
to avoid ambiguity. The choice of standardization does not affect the sub-
stantive results of the statistical analysis. In PLS path models all LVs are
standardized so as to have unit variance:

var(y) = 1, j=1,...,J. (6)

It is a fundamental principle in PLS path modeling that the information
between the blocks and the ensuing causal-predictive inference is conveyed
through the latent variables. Accordingly, it is assumed that the latent
variables are, in general, intercorrelated, say,

r(é:i, &) = pyjs Lj=1,...,J, (7

whereas the residuals of any block are assumed to be uncorrelated with the
residuals of other blocks and with all latent variables:

r(Dih’Djk) =r(m, &) = "(Dih,fj) =0,
i#j, ij=1,...,J, h=1,...,K;, k=1,...,K;. (8)

In the basic model design it is assumed, furthermore, that the residuals are
mutually uncorrelated within blocks:

r(Djh,Djk)=0, j=1,...,], h¢k=1,,K1 (9)

Formally, the block structure as specified by Eqgs. (4)—(9) is the same for all
PLS models. What differs between models is the specified number of blocks
and the number of indicators in each block.

“Just as the scales of the latent variables £; are ambiguous in the block
structure, so also are the signs of ¢;and n ;.. Clearly, a change in the sign in the
jth latent variable will change correspondingly the signs of all its loadings
nig,k=1,2,...,K;. The choice of sign is inherent in the subject matter of
the model. The model builder defines the manifest variables x ; so that their
signs are in accordance with the nature of the postulated latent variable &;.
The sign of ¢; then determines the signs of the loading 7 in the block

- 4 The “predictor” specification (5) provides the basis for causal-predictive inferences from 6]
and at the same time for consistent estimation of the parameters by OLS regression, cf. H. Wold
(1963).
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structure in (4). Hence, when the loadings are estimated, their more or less
complete agreement with the postulated signs provides a partial test of
hypotheses.

For example, in the first block of Adelman’s model all indicators are
assumed to be positively related to the LV for level of economic development,
T >0j=1Lk=12...,7In the second block, the size of the traditional
agricultural sector is negatively related to the LV for social conditions,
my,1<0,j=2k=1

1.3. THE INNER RELATIONS

The LVs of a PLS path model are related by a path of “inner” relations,
which are linear and form a causal chain system. Using subscripts j, for the
endogenous variables—say, H in number—the inner relations are denoted by

&=+ Buluyte, Je=inesim 10)
and are specified by the conditional expectations
E@,|Ci) =y, + Bioluy T =i sims (11)

where &; , denotes the column vector of the latent variables that appear as
regressors with nonzero coefficients in the j,th equation as shown in (10)
and B, is the row vector of the corresponding coefficients. Also, let &;
denote those latent variables with which ¢; is directly connected, say,

j**zijl""’ijq’ (12)

withi;, #janda=1,...,q, where g = q(i) and varies with i. For example,
Adelman’s model has two inner relations:

&y =03 + B31&1 + P32, + &3, (13)
Eo =g+ Parly + Bazls + Basls + &4 (14

The conditional mean of Eq. (13) is
E(falfufz) =03+ 3181 + B32é2 (15)

and similarly for Eq. (14). In terms of the subscript notation in Egs. (10)
and (12), we have

3,=1,2, 4,=123, (16)
1,=34 2,=34 3,=124 4,=123 (@17

where the formula for 1, indicates that LV 1(economic block) is directly
related to LVs 3 and 4, the political block and the economic growth block,
respectively. See Fig. 1b.
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1.4. THE CAUSAL-PREDICTIVE RELATIONS

For the indicators of any endogenous LV the PLS approach to path
models with LVs provides causal-predictive relations by Substitutive
Elimination of the Latent Variable (SELV) from the corresponding block
structure (4) and inner relation (10). Hence in the basic design, the causal-
predictive relations read

X = Mg+ T, + TiaBupEay + Vik (18)
and the prediction errors are given by
vj*k :Dj*k +ch*k8j*’ j*=j1""’jH’ k: 1""’Kj*' (19)

In Adelman’s model, the third and fourth blocks are endogenous, and so
the PLS approach gives causal-predictive relations for the indicators of
these blocks, namely,

X3k = fax + Taxds + Tap(Ba1€1 + B3282) + vars

k=1,...,11, (20)
Xak = Pag + Taply + Tap(farly + Bazés + Pasés) + vaxs
k=1,...,8, (1)

with prediction errors given by

V3 = U3g + Tap€a, Var = Ogp + Tayty. (22)

2. Model Fitting and Parameter Estimation with PLS

~ Proceeding to the PLS estimation of path models with LVs, we shall first
give a formal exposition of the procedure and then discuss its rationale.
PLS estimation can use the observed data defined in (1.3) either in terms
of raw data or cross-product data. The estimates are numerically the same
except for rounding-off errors. We shall set forth the case of raw data input.
Postponing the estimation of the location parameters, we assume that all
observables are standardized to zero mean, say,

x}k,,=xjk,,—fjk, j=1,...,], k:1,...,Kj, n=1,...,N, (1)
‘Until further notice, furthermore, we shall drop the prime superscripts,
denoting the standardized observables as before by

n=1,...,N.
)

xj'k" ' nOWWith>_Cjk=0, le, ...,J, k=1,...,Kj,
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Each LV is to be estimated as a weighted aggregate of its indicators; the
first stage of the estimation process estimates the LVs and the requisite sets
of weights for the indicators.

If we denote the estimate of £; by X ;, with case values X ;,, the aggregate
formula, which is the same for all LVs in a PLS path model, is

Xjnzf;'z(wj'kx}'kn), j=1,...,], k=1,...,Kj, n-:l,...,N, (3)
k

where f; is a scalar, wy, are the weights, and x, are the case values for the
manifest variables. Since ¢ is standardizéd to unit variance, f; is determined
by the requirement that X ;, have unit variance over the N cases, i.e,

1 —-1/2
fi= i_{ﬁ Y <; (wjkxjk,,)2>} , j=1,...,J 4)

The weight relations serve to determine the weights wy in the PLS
estimation of Eq. (3) for each LV ¢; as a weighted aggregate of its indicators
Xig-

By the inner relations of the model, there is an exchange of information
between LV ¢&; of the jth block and those LVs ¢; with which &; is directly
connected in the arrow scheme. Hence the weight relations are designed to
provide ancillary information on the weights wj from these same ¢; s, using
OLS regressions for the purpose.

For each block, the model builder has the option to choose between two
modes of weight relations, say A or B. We note in advance that both modes
involve a sum of those LVs with which the LV of the block is directly con-
nected in the arrow scheme, a sum with sign factors (+ 1 or —1) denoted by
s;,;,, and defined by

8;.5,, = sgnr(X;, X)), J=1.. 0, Jex =it sljg (5)

where the subscripts j,, were defined in Eq. (1.12). Modes A and B for the
weight relations are defined as follows.

2.1. MopE A. StMPLE OLS REGRESSIONS WITH
THE INDICATORS AS REGRESSANDS

xjkzwjk(sj,,-ﬂX- + 585 X; 4+ +s

ij1 Jiij2 i Jiijq

X;,) + dy
k=1,...,K;, (6)

where x; are the manifest variables, X, are the predicted values for the
LVs, wy, are the weights to be estimated, and dj, are the residuals. Here and
in Eq. (7) the regressions are over n=1,...,N; for simplicity, we have
dropped the subscript n in the manifest variables, the LVs, and the residuals.
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2.2. MopE B. MULTIPLE OLS REGRESSION WITH
THE INDICATORS AS REGRESSORS

X, +s;;. X+ +s

1111 11 Jtj2 152

) l,q ijq Z(w_)kx}k) + d (7)

The arrow scheme illustrates the weight relations mode A or B by “outer”
arrows between the LVs and their indicators in the various blocks; see
Fig. 1b. The simple OLS regressions of mode A are illustrated by as many
arrows directed outwards from the LV to its indicators. The multiple OLS
regression of mode B is illustrated by a bundle of arrows directed inwards
from the indicators to the LV. In the arrow scheme of a PLS path model, the
“outer” arrow heads illustrate the residuals of the corresponding weight
relations in (6) or (7).

We shall say that the estimation is mode C if the model builder makes
combined use of modes A and B, each of the two modes being used for at
least one block. The following rule of thumb is offered for the choice between
A and B: If a block represents an exogenous LV, use B, otherwise, use A.

When the model builder has settled the choice of mode A or B for deter-
mining the weight relations in the various blocks of the model, the iterative
procedure of estimation of LVs and indicator weights is performed by
alternating between the weighted aggregates shown in Egs. (3) and (4) and
the weight relations shown in Egs. (5)-(7).

If we write r = 1,2,. . . for the consecutive steps in the iterative procedure
and mark the proxy estimates obtained in steps r and (r + 1) by the super-
scripts (') and ("), Egs. (3)—(7) give the values of the LVs and of the weights
in step (r + 1) in terms of the values obtained in step r as follows:

X5=f7Y WyXpy j=1,...,J, n=1,...,N (8)
P

1 —-1/2
j== {ﬁ; [; (WX jkn)z:l} > )

Xjw = Wi(sh, X0+ + 87, Xi )+ dpe, k=1, ,K;,  (10)
Sl Xi o+ s X = Zk(w;.'kx o) T i (11)
S, = sgn r(X5. X5, ), a=1,...,q. (12)

To start the iterative procedure with r = 1 all weights are taken to be
equal, say,

w;.kzl, j:l,.,.,], k=1,...,Kj. (13)
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After the first step, we use the weights w, obtained in the rth step, together
with the linear aggregates shown in (8) and the standardizing factors f
determined by (9), in order to obtain the case values X7, for the LVs in step
(r + 1). Then, according as the weight relations for the jth block are decided
to be mode A or B, the weights w/; in step (+ + 1) are computed by the simple
OLS regressions shown in (10) and (11), respectively. In either case we use
the latent variables X7, obtained in (8) and the signs in (12) at the (r + 1)th
step.

The passage to the limit as r — co gives the PLS estimates of both the
weights and the LVs. Thus the estimated weights and LVs are given by

wy = lim w, X, = lim X},

j=1,...,J, k=1,..., K

» n=1,...,N. (14)

When the first stage of the PLS algorithm is completed, the second stage
uses the LVs estimated in the first stage to estimate the block structure (1.4)
by simple OLS regressions and the inner relations (1.10) by simple or multiple
OLS regressions, as the case may be. The causal-predictive relations (1.18)
are then estimated by substitution.

The third stage of the PLS algorithm estimates the location parameters
of the LVs, the block structure, the inner relations, and the causal-predictive
relations. In the PLS algorithm the estimation of location parameters is
immediate matter, as always in LS estimation.

Equations (2)—(14) for the PLS algorithm with raw data input (1) are
readily transformed in order to be able to use data input in the form of
cross-product data input. The ensuing parameter estimates are numerically
the same except for rounding-off errors. Combined use of the parameter
estimates and the raw data then provides estimates of the case values of the
LVs and of the residuals in the block structure, the inner relations, and the
causal-predictive relations—estimates that are important for the inter-
pretation, testing, and further evolution of the model.

The PLS algorithm is easily implemented on the computer for raw data
input as well as for cross-product data input. Computer programs allowing
optional use of raw data input or cross-product data input are available
in several versions.®

® The computer program packages MIDAS and MINITAB need no further implementation
to run the basic PLS algorithm. In the program of Hui (1978) the PLS procedure is combined
with the Fix-Point algorithm to estimate soft models that have interdependencies in the path of
inner relations. The program of Apel & Lohmotler (1980) combines PLS with Stone-Geisser
cross-validation for testing the predictive significance of soft modeling.
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2.3. THREE SpECIAL CASES OF PLS MODELING

Two PLS models are well-known from multivariate analysis. To begin,
the first principal component is numerically equivalent, up to a scale factor,
to a one-block PLS model estimated using the mode A procedure.® The
classical model standardizes the loadings m;; to unit square sum. The
iterative procedure (8)—(12) in this case shrinks to Egs. (8)—-(10) with (10)
reducing to

X1 = WX + digns k=1,...,K,, n=1,...,N. (15)

The two-block PLS path model estimated using the mode B procedure
gives the first canonical coefficient as the estimated correlation between the
two latent variables.® The iterative procedure now shrinks to the use of
Egs. (8), (9), and (11), with (11) given by

Skn = Z(Wlllkxlkn) + dygns k=1,...,Ky,
3

’{kll:Z(wlllkxlkn)+d2k1n k: 19~ "9K29 n= 19' 9N (16)
k

As a third case, consider the Adelman model. The appropriate relations
to be used in Adelman’s model are mode C since the model contains both
endogenous and exogenous variables. Consequently, the weight relations
are formed by mode B for the two first blocks, these being exogenous, and
by mode A for the two last blocks, which are endogenous. The weight rela-
tions for Adelman’s model are

531X 34 + 541X a0 = Z(Wlkxlkn) + dyns (17
3

532X 3, + 842X40 = Z(Wlkxzkn) + dzn, (18)
3

Xakn = War(831X 1 + 532X 2, + 534X aw) + dagns (19)
Xakn = War(521X 10 + 542X 20 + 543X 34) + dagns (20)

where n=1,...,74 throughout and k =1,...,K; in Egs. (17)—(20) with
K;=1,13,11, and 8, respectively.

The second stage of the PLS estimation procedure makes use of the
LVs obtained in the first stage to estimate the structural relations. First, the
block structure as shown in Eq. (1.4) is estimated by use of an OLS regression
of the manifest variables x on the estimate X ; of the jth LV. The regression

6 H. Wold (1966).
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equation without the location parameters is as follows:
xjkn=pijjn+ujkm j=1,~~~,J, k=1,~~~,Kj’ (21)

giving p; as the estimate for 7, in Eq. (1.4).

In Eq. (9), the sign of the standardization factor fj was left ambiguous.
The sign chosen for the limiting factor f; will, by Eq. (8), determine the sign
for the array of estimated case values X ;,(n = 1,.. ., N) of the latent variable
¢;, and hence by Eq. (21) the sign for the array of estimated loadings
puk=1,...,K;). Thus for the jth block, there are two possibilities for
choosing the sign of X; and of the array of loadings pj;,. The model builder
should choose that sign for X ; which agrees with most of the presumed signs
for the theoretical loadings. That is, he should choose that sign so as to give

;(sgn Tbu) > 0. 22)

However, suppose that the investigator estimates the model in one of
two different ways: either, say, by mode A or mode C. The rule in the previous
paragraph should then be applied to determine the signs for the mode A
estimate of X,, say, X;,(A). For mode C, the sign of f; should thereafter be
chosen so as to give positive correlation over n of X;,(A) and X;,(C),”

r[Xjn(A)’ Xjn(C)] > 0. (23)

In Adelman’s model, the mode C procedure was chosen. Writing
rij = r(x;,x;) for the correlations between the estimated LVs, the resulting
six values are shown on the first line of Table 2. For comparison, we also
give the corresponding mode A and mode B estimates. Since Adelman’s
arrow scheme has no arrow between the first two LVs, there is nothing in the

TABLE 2

SIMPLE CORRELATIONS BETWEEN LVs GIVEN ALTERNATIVE
ESTIMATION PROCEDURES”

23 T24 Fi3 Fra Vg ry2

Mode C .766 779 699 797 481 918
Mode A 671 776 705 784 488 912
Mode B 842 .889 810 878 709 934

“Here and in the text the numerical results on Adelman’s
model draw from Apel & H. Wold (1980).

7 H. Wold (1978b).
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PLS estimation procedure that makes for close agreement between the
estimates 7, ,; hence this column has been placed by itself.

The correlations mode C and A show close agreement. Relative to mode B
the differences are larger. The inner relations shown in Eq. (1.10) are estimated
without location parameters in terms of the regression equation:

X n=b(j)X(j*)n+ej"’ j:jl""’jH’ n:l,.--,N, (24)

where by;,, is the OLS estimate for f;). As before using mode C estimation,
the inner relations in Adelman’s model are, in this stage, without location
parameters:

Xy = —.026X, +.790X, + e, var(es) = 413,  (25)
X, = 514X, + 517X, — 274X + e,,  var(e) =.319.  (26)

For comparison we give the inner relations when estimated by the mode
A procedure,

X, = 554X, + 166X, + e;, var(e;) = 498,  (27)
X, =.537X, + 338X, — 151X; +e,,  var(ey)=.351.  (28)

We see that for the inner coefficients b; ,, the difference between modes A and
C is larger than for the simple total correlations r;;. The difference in esti-
mation robustness is natural since the bs are partial correlations and are
nonlinear functions of the simple correlations r;;.

Although the residual variances are somewhat smaller for mode C, which
we have chosen for the estimation of Adelman’s model, the inner relations
estimated by mode A are more plausible. For example, in mode C it is against
common sense that X, the LV that measures the level of economic devel-
opment, has a coefficient b5, that is insignificant or even negative. Part of
the explanation may be the difference in robustness just referred to. Another
part of the story is that for the group of 74 countries, the model structure is
nonlinear with regard to the level of economic growth.

This last point has been emphasized by Adelman & Morriss (1967, 1973)
and can be illustrated in terms of the inner relations as estimated separately
for the three groups of countries (L, M, H) classified with regard to economic
growth; see Fig. 1b. Using the mode C procedure, the estimated inner rela-
tions for the 28 countries with low (L) economic growth are

X3 = .093X1 + .665X2 + 63, (29)
X, =.390X, + 950X, — 672X + eq, (30)
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and for the 25 countries with high (H) economic growth, they read
X3 = .356X1 + .596X2 + 63, (31)
X, =159X, + 1.158X, — .601X; + e4. (32)

The coefficient b, is positive for the intermediate (M) group of 21 countries
with a value of .151.

When the countries are grouped with regard to economic growth, the
sample size is only about one third of the total sample. Hence in Egs. (29)
and (30), the estimates of the inner coefficients b are less robust than for the
relations in Egs. (25) and (26) for the entire group of 74 countries. Finally,
let us again examine a shift in estimation mode with regard to the robustness
of the inner relations. For the countries group (H), the inner relations, when
estimated by mode A, are

X3 = 373X1 + 530X2 + €3, (33)
X4 = .522X1 hd .261X2 + .397X3 + 64. (34)

We are now in a position to compare the robustness of the inner coef-
ficients b with regard to the shift in estimation from mode C to A, on the one
hand, and to the nonlinearity of the model structure on the other. It appears
that the robustness is more pronounced for the shift in estimation mode
than for the shift from total sample to subgroup (H). This is so whether the
comparison is based on estimation Mode C as applied to the total sample or
the subgroup (H).

2.4. THE CASUAL—PREDICTIVE RELATIONS

The relations shown in Eq. (1.18) can be written in terms of the estimated
parameters and LVs as

Xjqn = PixbpX gon + Vs>
j*=j19"'9jH9 kzl,...,Kj*, n':l,...,N, (35)
with prediction error
vj*kn = ujkn + pj*kejkn' (36)

Alternatively, one can write

xj*kn = ﬁj*kb(j*)X(j*)n + ﬁj*kn» (37)
»

where the “reestimated loadings” p;  are obtained by computing for fixed
Jx» k the simple OLS regression of x; 4, on the composite variable b(;,X (; y»
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a regression over n = 1,. .., N. In virtue of the least squares property of the
residuals D; 4,

var(D; ) < var(vyg),  Jjy=Jji-.-oim k=1,...,K;. (38)

Causal-predictive relations in terms of the manifest variables can be
obtained from Egs. (35) or (37) by using (3) to substitute for the right-hand
LVs as estimated by the linear aggregates of their indicators. For the reesti-
mated version (37) this gives

Ky
Xjgn = Djx Y |:bj,,if;' h; (Win xihn)] + 0 kns (39)

i <j=\-
where the residual remains the same as in Eq. (37),

ﬁj*kn = ujkn + ﬁj*kejknr' (40)
It will suffice for our purposes to illustrate only the first two versions of

the estimation of the causal-predictive relations. The results for the first

version as applied to countries (H)are forj=3, k=3 andj=4,k=1

X3z = 313X, 4+ 523X, + v33,, 11, (var vy) = .580 (41)

k
Xain = 136X 1, + 989X 5, — 514X 3, + 04y, 5 Y (var vg) = .796.  (42)
k

The second version with re-estimated loadings is

X33, = 287X, + 480X ,, + a3y, 11 ). (var Byy) = .576, (43)
3
Xq1n = 112X, + 813X ,, — 422X 3, + 04145 &, (var ) = .779.  (44)
K

Note that both the residual variances and the coefficients of the LVs decrease
from Eqgs. (41)—(42) to Egs. (43)—(44). This is perhaps surprising at first sight
but is in perfect accordance with the reestimation of the loadings p;,, in
Eq. (37).

2.5. ESTIMATES OF LOADINGS AND LVs

In PLS path models the inner relations and the causal-predictive rela-
tions give new knowledge of a broad aggregate kind. Knowledge of a more
specific kind is given by the estimates X ;, p; of the LVs ¢; and the loadings
s in the block structure.

For the readers of Adelman and Morriss’ trail blazing monographs (1967,
1973), the numerical illustrations of the PLS estimation of Adelman’s model
(1975a), cited in Sections 2.3 and 2.4, cause no surprise, least ofall for Adelman
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and Morriss themselves. With factor analysis as their main tool, which they
handle with superb skill, Adelman and Morriss classify the 74 countries
covered by their data bank into the three groups (L,M,H) and perform a
penetrating causal analysis of economic growth and equity. The present
analysis places more distinct emphasis on cause—effect aspects and provides
a quantitative sharpening of some of Adelman—Morriss’ arguments. This is
so also for the subsequent generalization to LVs in two dimensions.

In coping with the causal-predictive analysis of problems with high com-

plexity and low information, the key feature of soft modeling is the explicit,

albeit deliberately approximate, estimation of each LV by a weighted aggre-
gate (1.3) of its indicators. This key feature is reflected in several important
aspects of the PLS approach: flexibility, “instant estimation,” convergence,
partial least squares optimization, and consistency at large. Let us briefly
focus on each feature.

2.6. FLEXIBILITY

The basic design of PLS “soft modeling” is malleable to the problem
under analysis due to the flexibility of the arrow scheme. When the observ-
ables are grouped into blocks for indirect measurement of the LVs, the
composition, number, and size of the blocks are flexible as well as are the
number and structure of the inner relations. The flexibility is heightened by
the choice of estimation mode A, B, or C, wherein two LS extremum prin-
ciples come into play.

More precisely, the first principal component gives LS prediction of the
indicators when the LV (the component) is given and is estimated by mode
A. The first canonical correlation gives maximum correlation between two
LVs and is estimated by mode B. In the passage from two to three or more
blocks in the PLS model, the extremum principles of principal components
and canonical correlations carry over, albeit in a qualified sense.

When the weight relations of the jth block are estimated by mode A,
they are given by Eq. (6) and provide ancillary predictive relations for the
observables in the block in terms of estimates of the LVs with which the jth
LV is directly connected in the arrow scheme. By the least squares principle,
the prediction errors of the relations shown in (6) have minimum variance.
But when the weight relations of the jth block are estimated by mode B pro-
cedures, they are given by Eq. (7) and provide estimates for the correlations
of the jth LV and the LVs with which the jth LV is directly connected in the
arrow scheme. By virtue of the least squares principle, the sum of the absolute
values of these intercorrelations will be maximum for given estimates of
these last mentioned LVs.
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2.7. “INSTANT ESTIMATION”

This description of PLS estimation is suggested because the relations
used in the estimation can be written down directly from the arrow scheme
and because of the easy and speedy computer work.

Two features in the PLS approach are instrumental in making for instant
estimation ; namely, the explicit estimation of the LVs by the use of weighted
aggregates of their indicators and the direct estimation of the weight relations
by mode A or B. Thanks to the explicit estimation of the LVs, no identifica-
tion problems arise in “soft” modeling. The weight relations avoid the non-
linear side relations that would arise if the aggregate relations were treated
as side conditions and had to be taken into account through Lagrange multi-
pliers. However, the weight relations are not deduced from the PLS model
as defined by the block structure and the inner relations but are ancillary
information gathered from the intercorrelations between each LV and its
adjacent LVs in the arrow scheme.

2.8. CONVERGENCE

For one- and two-block models the PLS estimation procedure converges
almost certainly.® For PLS models with three or more blocks, convergence
of the estimation procedure has never been a problem in applications to
real-world models and data. For example, in the numerical estimation of
Adelman’s model, convergence of the iterative procedure was reached for
modes A, B, and C in three, six, and four steps, respectively.

2.9. PLS OPTIMIZATION

In PLS estimation, each regression step of the procedure is an LS esti-
mation of one or more unknowns in terms of proxy or final estimates for one
or more other unknowns; no total, or overall, extremum condition is imposed
as a unifying condition.

The PLS procedure minimizes in its first stage each residual variance in
the weight relations that for the various blocks of the model are given by
Egs. (6) or (7). This is done for each block depending on the choice of esti-
mation mode A or B for that block. In each step r = 1,2,. .. the iterative
first stage of the PLS algorithm is nothing other than the conventional LS

8 Lyttkens, Areskoug & H. Wold (1975).
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procedure, the residual variance of a weight relation being minimized with
regard to the free parameters which are the weights. Mode A uses simple OLS
regressions to minimize with respect to the parameters one by one, whereas
mode B uses multiple OLS regression to minimize with regard to the param-
eters jointly. The conformity with the conventional LS procedure carries
over to the limit as r — oo,

The second stage of the PLS algorithm uses the LVs obtained in the first
stage to estimate the parameters of the structural relations of the model. This
is performed by minimizing the residual variances in the block structure, the
inner relations, and the causal-predictive relations SELV with reestimation.
Thus the PLS procedure is partial LS in the sense that each step of the pro-
cedure minimizes a residual variance with respect to a subset of the free
parameters, given proxy or final estimates for the other parameters. In the
limit the PLS estimation procedure is coherent in the sense that all the residual
variances are minimized-jointly. However, the PLS procedure remains partial
in the sense that no total residual variance or other overall criterion is set up
for optimization.’

2.10. CONSISTENCY AND CONSISTENCY AT LARGE

These limit properties of PLS estimation refer to the passage to the limit
as the sample size increases (consistency) and as the block size increases as
well (consistency at large). Both properties hold good for PLS estimation
under mild supplementary conditions to the model structure defined in
Egs. (1.3)—(1.11). However, consistency does not imply that the estimator
is unbiased in the limit; a well-known example is the canonical correlation
coefficient. While consistency is a simple corollary of predictor specification,
see Footnote 4, consistency at large is a straightforward implication of the
classical probability theorem known as the Law of Large Numbers.!?

3. Construction and Evaluation of PLS Models

The PLS approach to path models with LVs has developed gradually
since 1971, as documented in a series of progress reports, and it is even more
recently that its foundations have been consolidated enough to support the
crucial transition from a pioneering device to a useful tool for applied work.
Table 3 refers to some 20 applications to real-world problems and data that

9 H. Wold (1980b).
10 11, Wold (19782, 1980b).
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were available when this chapter was drafted. The dates in the last column
show that the PLS approach is gaining momentum but is still in an early stage
of evolution. The purpose of this final section is to summarize the evolution
of PL.S model construction and to discuss the accumulating experience about
the scope and limitations of the PLS approach.

3.1. WHEN 1O, HOW TO, AND WHY TO USE PLS

As stated at the outset PLS modeling is primarily designed for causal-
predictive analysis of problems with high complexity, but low information.
Table 3 gives evidence of the wide applicability of PLS modeling with latent
variables. Complex problems with low information occur in most or all
sciences and the list includes examples ranging from the natural and medical
to the social and political sciences.

Being distribution-free, PLS estimation imposes no restrictions on the
format or the data. The available data may be time series or cross sections.
The observations on the indicators may be quantitative measurements,
ordinal ranks, or records of occurrence, nonoccurrence, or of low versus high
levels of the indicator.

The arrow scheme is the conceptual-theoretical blueprint for the model.
The arrow scheme indicates which LVs enter the model, which observables—
indicators are to be used and their grouping into the blocks for indirect
measurement of the LVs, and which “inner relations” are assumed to exist
between the LVs. Speaking broadly, the researcher designs the arrow scheme
on the joint basis of his rudimentary theoretical knowledge, his experience
and intuition about the problems explored, and the data that are at his
disposal.

The arrow scheme is usually tentative since the model construction is an
evolutionary process. The empirical content of the model is extracted from
the data, and the model is improved by interactions through the estimation
procedure between the model and the data and the reactions of the researcher.
Consequently, the researcher should begin with a generous number of ob-
servables—indicators in the various blocks. To use many observables makes
for rich empirical content of the model and is favorable to the accuracy of
the PLS estimation procedure. In the interaction between the data and the
original model it will become apparent which indicators are relevant and
which should be omitted. The researcher in planning his empirical analysis
must choose between the various modes of estimation. To use estimation
mode A for the whole model gives minimum residual variances in the block
structure; but to use mode B for the whole model leads to maximum inter-
correlations between the LVs that are directly connected in the arrow scheme.
The hybrid mode C strikes a balance in these respects.
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In the cause—effect and predictive performance of a soft model the relev-
ance of the various LVs hinges upon their indicators. In the relationship
between an LV and its indicators the model gives two measures for the relev-
ance of an indicator, namely, its loading and its weight. The difference is
analogous to the difference between the coefficients from simple and multiple
regression. Thus for the indicator xj, its loading p; measures the separate
or individual contribution of xj, to the relevance of the LV of the jth block,
whereas its weight w ;, measures the contribution of xj to the joint relevance
of the indicators in the jth block and thereby to the relevance of the jth LV.
Both measures are of importance; hence in applied work with soft modeling
both measures should be used and reported.

The causal—-predictive accuracy of a specific explanatory variable and its
coefficient, on the assumption that the other variables remain constant, hinges
upon whether the selection of explanatory variables is sufficiently realistic
and complete. For example, a dormant variable that comes into play may
bring drastic changes in the coefficients.

As to the distribution between causal and predictive inferences, causal
relations are always predictive, but predictive relations are not necessarily
causal. The question whether an explanatory variable is not only predictive,
but also causal, belongs to the subject matter of the model.
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